Preparation and Properties of Foamed Cellulose- Polymer Microsphere Hybrid Materials for Sound Absorption

نویسندگان

  • Fan Cheng
  • Pengbo Lu
  • Pengfei Ren
  • Jinbo Chen
  • Yanghao Ou
  • Meiyan Lin
  • Detao Liu
چکیده

Sustainability and eco-efficiency are presently directing the development of the next generation of acoustic materials. In this work, foamed cellulosepolymer microsphere (PM) hybrid materials, having sound-absorbing capability, were prepared by incorporating the PMs into cellulose fibers by dehydration and foaming processes. The evolution in morphology of PMs during foaming process was investigated for different heating temperatures. The beating process disintegrated the microscopic cellulose fiber into the smaller fibers, which connected the PMs by a unique fibrous network. The influences of foaming temperature, PM content, and total areal density on the sound absorbing property of composites were studied. The results showed that incorporating the acoustic unit of elastic PMs into the porous cellulose fiber-based network significantly improved the sound absorbing ability of the composites. The sound-absorbing hybrid materials appear to be a promising alternative to non-degradable organic or inorganic acoustic composites, being economical, simple, and eco-friendly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation and Characterization of Salbutamol Sulphate Loaded Ethyl Cellulose Microspheres using Water-in-Oil-Oil Emulsion Technique

The aim of this study was to formulate and evaluate microencapsulated controlled release preparations of a highly water/soluble drug, salbutamol sulphate by (water in oil) in oil emulsion technique using ethyl cellulose as the retardant material. Various processing and formulation parameters such as drug/polymer ratio, stirring speed, volume of processing medium were optimized to maximize the e...

متن کامل

Investigation of Acoustic Properties of Polymer Nanocomposites regarding Combined Sound Absorption and Insulation Characteristics

Introduction: Nowadays multiple techniques have been developed to noise control. One the most important way is the control based on sound absorption and insulation. The purpose of current study was to improve the acoustic properties of soft polyurethane foam regarding combined sound absorption and insulation characteristics. Materials and Methods: Polyacrylonitrile and polyvinylidine fluoride ...

متن کامل

Preparation and Characterization of Salbutamol Sulphate Loaded Ethyl Cellulose Microspheres using Water-in-Oil-Oil Emulsion Technique

The aim of this study was to formulate and evaluate microencapsulated controlled release preparations of a highly water/soluble drug, salbutamol sulphate by (water in oil) in oil emulsion technique using ethyl cellulose as the retardant material. Various processing and formulation parameters such as drug/polymer ratio, stirring speed, volume of processing medium were optimized to maximize the e...

متن کامل

Investigation of Macroporous Calcium Phosphate Cement Obtained by Foamed Gelatin Polymer

This study deals with the effect of gelatin on physical and mechanical properties of  calcium phosphate bone cements. The mixture of tetracalcium phosphate (TTCP) and dicalcium phosphate (DCPA) as the cement powder was mixed with 6 wt% Na2HPO4 solution containing different amount (0, 2, 5 and 8% in w/w) of foamed gelatin as liquid phase. The physical properties were determined in the terms of s...

متن کامل

Investigation on cross-linked nanomicrobial cellulose properties as modern wound dressing

Background: Nanomicrobial cellulose is an important biopolymer with a three-dimensional structure that is produced by some microorganisms and has been widely used in medicine. One of the unique properties of microbial cellulose is its very high water absorption, which can be used to produce modern wound dressings. But after drying, it’s three-dimensional structure collapses and the amount of wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016